RELATIONS BETWEEN HEATS OF FORMATION OF MX₂ HALIDES AND ELECTRONEGATIVITIES OF HALOGEN IONS

HARUO OHASHI

National Institute for Research in Inorganic Materials, Namiki 1-1, Sakura-mura, Niihari-gun, Ibaraki 305 (Japan)

(Received 17 June 1986)

ABSTRACT

The heats of formation of MX₂ halides (M being Ba, Sr, Ca, Mg, Be, Mn Fe, Co, Ni, Cu, Zn, Cd and Hg), $-\Delta H_{298}^0$, are expressed empirically by electronegativities (χ_A) of halogen ion:

$$\frac{-\Delta H_{298}^0 \left\{ \left(-\frac{e^2}{r_{\rm A}}\right) / \left(-100 \, \rm kcal_{th} \, mol^{-1}\right) \right\}^{1/2}}{\left(2e^2/r_{\rm C}\right)} = a\chi_{\rm A} + b$$

where a and b are empirical constants; factor 2, e, $r_{\rm C}$ and $r_{\rm A}$ represent the valence number of the cation, the charge on the electron, cationic radius, and anionic radius, respectively. The value of $2e^2/r_{\rm C}$ corresponds to the electrostatic energy between the effective nuclear charge of the M^{2+} ion (2e) and an electron at a distance from its nucleus equal to its ionic radius $r_{\rm C}$. The empirical constants a and b correlate with the electronegativity of the M^{2+} ion as three different trends; Ba, Sr, Ca, Mg, Be series, Mn, Fe, Co, Ni, Cu series and Zn, Cd, Hg series. Although physical meaning is not clear, this empirical equation is useful to predict the values of electronegativity and/or ionic radius from the heat of formation, and vice versa. The electronegativity of Cd²⁺ in halides is found to be 1.3 in Pauling's scale. This value is consistent with that obtained from the structure refinement of Cd₃Al₂Si₃O₁₂ garnet.

INTRODUCTION

Pauling's electronegativity was introduced as an attribute of the atom in a covalent compound. Therefore, his equation, $0.208\sqrt{\Delta} = |\chi_x - \chi_y|$, does not satisfy the relation between $\sqrt{\Delta}$ and $|\chi_x - \chi_y|$ in an ionic compound. Ohashi [1-3] has found that the ratio of the heat of formation to the potential energy ($P_E = ne^2/r$) is an effective scaling to correlate the heat of formation of the ionic compound with Pauling's electronegativity. The

purpose of this study is to examine the relation between heats of formation of MX_2 halides and electronegativities of halogen and divalent metal ions.

RELATION BETWEEN HEATS OF FORMATION OF MX_2 HALIDES AND ELECTRONEGATIVITIES OF HALOGEN IONS

The electronegativities of M^{2+} and halogen ions obtained from Pauling's method are listed in Table 1, along with the ionic radii of M^{2+} ($r_{\rm C}$) and X^{-} ions ($r_{\rm A}$) in octahedral site and potential energy ($P_{\rm E} = ne^2/r$). The $P_{\rm E}$ corresponds to electrostatic energy between effective nuclear charge of the M^{2+} ion (ne) and an electron at a distance from its nucleus equal to its ionic radius r. If r is given in ångström, the $P_{\rm E}$ is evaluated, using $N_{\rm A}ne^2/r = 332(n/r)$ kcal_{th} mol⁻¹, where $N_{\rm A}$, n, e and r represent Avogadro's number, the valence number, the charge on the electron, and the ionic radius, respectively. The heats of formation of MX₂ (M: divalent metal; X: halogen), $-\Delta H^0_{298}$ (solid), are listed in Tables 2–4. Figures 1–3 illustrate the relation between $\langle -\Delta H \rangle$ and $\chi_{\rm A}$ (where $\langle -\Delta H \rangle = -\Delta H^0_{298} \{(-e^2/r_{\rm A})/(-100 \text{ kcal}_{th} \text{ mol}^{-1})\}^{1/2}/(2e^2/r_{\rm C})$).

The correlation shown in Fig. 1 indicates that the electronegativity of alkali-earth ion should decrease in the order Be > Mg > Ca > Sr > Ba and

TABLE 1

Electronegativity (χ) [4], ionic radius (r) [5], potential energy (ne^2/r), and ionization potential {IP(I+II)} [6]

Ion	x	r (Å)	ne^2/r^a	IP(I + II) eV	
Ba	0.9	1.35	491.9	15.21	
Sr	1.0	1.18	562.7	16.72	
Ca	1.0	1.00	664.0	17.98	
Mg	1.2	0.72	922.2	22.67	
Be	1.5	0.45	1475.6	27.53	
Mn	1.4 ^b	0.83	800.0	23.07	
Fe	1.65 ^b	0.78	851.3	24.05	
Co	1.8	0.745	891.3	24.91	
Ni	1.8	0.690	962.3	25.78	
Cu	2.0 ^ь	0.73	909.6	28.01	
Zn	1.5 ^b	0.740	897.3	27.32	
Cd	1.5 ^b	0.95	699.0	25.89	
Hg	1.9	1.02	651.0	29.18	
F	4.0	1.33	- 249.6		
C1	3.0	1.81	-183.4		
Br	2.8	1.96	- 169.4		
I	2.5	2.20	-150.9		

^a kcal_{th} mol^{-1} (1 cal_{th} = 4.184 J).

^b From ref. 8.

TABLE 2

Substance	$-\Delta H_{298}^0(s)^{a}$	$\langle -\Delta H \rangle^{\rm b}$	
BaF ₂	287.7	0.924	
BaCl ₂	205.4	0.565	
BaBr ₂	180.5	0.478	
BaI ₂	144.5	0.361	
SrF ₂	289.0	0.811	
SrCl ₂	198.2	0.477	
SrBr ₂	171.2	0.396	
SrI ₂	134.0	0.292	
CaF ₂	292.0	0.695	
CaCl ₂	191.4	0.390	
CaBr ₂	163.2	0.320	
CaI ₂	128.0	0.237	
MgF ₂	266.0	0.456	
MgCl ₂	153.4	0.225	
MgBr ₂	123.7	0.175	
MgI ₂	86.0	0.115	
BeF ₂	243.0	0.260	
BeCl ₂	118.0	0.108	
BeBr ₂	79.4	0.070	
BeI ₂	39.4	0.033	

Heat of formation $\{-\Delta H_{298}^0(s)\}$ [7] and $\langle -\Delta H \rangle$ value

^a See footnote a Table 1. ^b For $\langle -\Delta H \rangle$, see text.

Fig. 1. $\langle -\Delta H \rangle$ in alkali earth halides plotted against the electronegativity (χ_A) of X⁻ ion.

Substance	$-\Delta H_{298}^0(s)^{a}$	$\langle -\Delta H \rangle^{\rm b}$	
MnF ₂	204.6 °	0.404	
MnCl ₂	115.2	0.195	
MnBr ₂	90.0	0.146	
MnI ₂	58.0	0.089	
FeF ₂	168.0	0.312	
FeCl ₂	81.8	0.130	
FeBr ₂	59.1	0.090	
FeI ₂	30.0	0.043	
CoF ₂	159.0	0.282	
CoCl ₂	77.8	0.118	
CoBr ₂	51.0	0.074	
CoI ₂	21.0	0.029	
NiF ₂	158.0	0.259	
NiCl ₂	73.0	0.103	
NiBr ₂	51.8	0.070	
NiI ₂	23.0	0.029	
CuF ₂	128.0	0.222	
CuCl ₂	49.2	0.073	
CuBr ₂	33.2	- 0.048	
CuI ₂	1.7	0.002	

Heat of formation $\{-\Delta H_{298}^0(s)\}$ [7] and $\langle -\Delta H \rangle$ value

^a See footnote a Table 1.

^b See footnote b Table 2.

^c From ref. 9.

TABLE 4

Heat of formation $\{-\Delta H^0_{298}(s)\}$ [7] and $\langle -\Delta H \rangle$ value

	• •••	() b	
Substance	$-\Delta H_{298}^{0}(s)$ a	$\langle -\Delta H \rangle^{0}$	
ZnF ₂	182.7	0.322	
ZnCl ₂	99.5	0.150	
ZnBr ₂	78.3	0.114	
ZnI ₂	50.0	0.068	
CdF ₂	167.4	0.378	
CdCl ₂	93.0	0.180	
CdBr ₂	75.2	0.140	
CdI ₂	48.0	0.084	
HgF ₂	101.0 °	0.245	
HgCl ₂	55.0	0.114	
HgBr ₂	40.5	0.081	
HgI ₂	25.2	0.048	

^a See footnote a Table 1.

^b See footnote b Table 2.

^c From ref. 10.

TABLE 3

Fig. 2. $\langle -\Delta H \rangle$ in MX₂ halides (M = Mn, Fe, Co, Ni, Cu) plotted against the electronegativity (χ_A) of X⁻ ion.

Fig. 3. $\langle -\Delta H \rangle$ in MX₂ halides (M = Zn, Cd, Hg) plotted against the electronegativity (χ_{Λ}) of X⁻ ion.

189

the electronegativity of Sr^{2+} should be revised to be 0.95 in Pauling's scale. On the other hand, the correlation shown in Fig. 3 indicates that the electronegativity of Group IIb ion should decrease in the order Hg > Zn > Cd. In the structure refinement of $\mathrm{Cd}_3\mathrm{Al}_2\mathrm{Si}_3\mathrm{O}_{12}$ garnet, the electronegativity of Cd in dodecahedral site has been estimated to be 1.3 in Pauling's scale and appeared to be more electropositive than Zn [11]. Their results seem to be consistent with ours. Hereafter the electronegativities of Sr and Cd are constrained to 0.95 and 1.3, respectively.

RELATION BETWEEN HEATS OF FORMATION OF MX_2 HALIDES AND ELECTRONEGATIVITIES OF DIVALENT METAL IONS

Solid lines in Figs. 1-3 are the least-mean-square fit to the equation:

$$\frac{-\Delta H_{298}^0 \left\{ \left(-e^2/r_{\rm A}\right) / \left(-100 \, \rm kcal_{th} \, mol^{-1}\right) \right\}^{1/2}}{\left(2e^2/r_{\rm C}\right)} = a\chi_{\rm A} + b, \tag{1}$$

where a and b are empirical constants. They are listed in Table 5 and are plotted against the electronegativities of M^{2+} ions in Fig. 4. The empirical constants a and b correlate with the electronegativity of the M^{2+} ion as three different trends. These facts indicate that some other factors (e.g. polarizability of the ion) affect the heat of formation.

The plots for Ni halides in Fig. 4 deviate from the trends among the transition metal ion series. The deviation requires a re-examination for the heats of formation of Ni halides (e.g. NiI_2).

Ion	a	Ь	
Ba	0.373	- 0.566	
Sr	0.345	-0.568	
Ca	0.307	-0.534	
Mg	0.229	-0.462	
Be	0.153	-0.353	
Mn	0.211	-0.441	
Fe	0.181	-0.412	
Co	0.169	-0.395	
Ni	0.155	-0.360	
Cu	0.147	-0.364	
Zn	0.170	-0.360	
Cd	0.197	-0.410	
Hg	0.133	-0.287	

TABLE 5

Empirical constants, a and b, in eqn. (1)

Fig. 4. Empirical constants, a and b, in eqn. 1 plotted against the electronegativity (χ_c) of M^{2+} ion.

Fig. 5. $\langle -\Delta H \rangle$ in MF₂ plotted against the electronegativity (χ_C) of M²⁺ ion.

Fig. 6. $\langle -\Delta H \rangle$ in MF₂ plotted against the sum of first and second ionization potentials of M atoms.

Figures 5 and 6 illustrate the variation of the value of $\langle -\Delta H \rangle$ of MF₂ with the electronegativity of M²⁺ ion and with the sum of the first and second ionization potentials, respectively. These correlations indicate that Ni is more electronegative than Co. The electronegativities of Co and Ni ions are estimated to be 1.75 and 1.85, respectively.

REFERENCES

- 1 H. Ohashi, J. Jpn. Assoc. Min. Petr. Econ. Geol., 79 (1984) 329.
- 2 H. Ohashi, National Institute for Research in Inorganic Materials, Res. Rep., 42 (1985) 72.
- 3 H. Ohashi, Thermochim. Acta, in press.
- 4 L. Pauling, The Nature of the Chemical Bond, 3rd, edn., Cornell University Press, Ithaca, NY, 1960.
- 5 R.D. Shannon, Acta Crystallogr., Sect. A, 32 (1976) 751.
- 6 C.E. Moore, Atomic Energy Levels, Circular of the National Bureau of Standards 467, Vols. I-III, 1949-58.

- 7 O. Kubashewski, E.LL. Evans and C.B. Alcock, Metallurgical Thermochemistry, 4th edn., Pergamon, London, 1967.
- 8 M. Haissinsky, J. Phys. Radium, 7 (1946) 7.
- 9 S.C. Schaefer, U.S. Bur. Mines, Rep. Invest., 8973 (1985) 1.
- 10 L.B. Pankratz, U.S. Bur. Mines, Bull., 674 (1984) 312.
- 11 H. Ohashi, J. Jpn. Assoc. Min. Petr. Econ. Geol., 80 (1985) 499.